7152 measured reflections

 $R_{\rm int}=0.016$ 

4893 independent reflections 4057 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### (E)-4-Chloro-2-[(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1*H*-pyrazol-4-yl)iminomethyl]-6-methoxyphenyl 4-methylbenzenesulfonate acetonitrile solvate

#### Xiao-Li Zhen,<sup>a</sup> Xia Tian,<sup>a</sup> Zhen-Chao Li,<sup>a</sup> Jian-Rong Han<sup>a</sup>\* and Shou-Xin Liu<sup>b</sup>‡

<sup>a</sup>College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China, and <sup>b</sup>College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: han\_jianrong@163.com

Received 16 October 2007; accepted 16 October 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.133; data-to-parameter ratio = 13.7.

In the title compound,  $C_{26}H_{24}CIN_3O_5S \cdot C_2H_3N$ , the *o*-vanillin group makes dihedral angles of 25.87 (4), 11.93 (3) and  $72.05 (7)^{\circ}$  with the pyrazolone, benzene and phenyl rings, respectively. The crystal structure is stabilized by weak intermolecular C-H···O interactions that link molecules into centrosymmetric dimers.

#### **Related literature**

For related structures, see: Han et al. (2007); Hu (2006). For general background, see: Kahwa et al. (1986); Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

# H<sub>3</sub>C−C≡N

#### ‡ Additional correspondence author: liu\_shouxin@163.com.

#### Crystal data

| $C_{26}H_{24}CIN_3O_5S \cdot C_2H_3N$ | $\gamma = 94.910 \ (2)^{\circ}$           |
|---------------------------------------|-------------------------------------------|
| $M_r = 567.06$                        | V = 1396.1 (3) Å <sup>3</sup>             |
| Triclinic, P1                         | Z = 2                                     |
| a = 7.3242 (9)  Å                     | Mo $K\alpha$ radiation                    |
| b = 13.2452 (17)  Å                   | $\mu = 0.26 \text{ mm}^{-1}$              |
| c = 15.3145 (19)  Å                   | T = 294 (2) K                             |
| $\alpha = 108.731 \ (2)^{\circ}$      | $0.24 \times 0.22 \times 0.18 \text{ mm}$ |
| $\beta = 93.303 \ (2)^{\circ}$        |                                           |

#### Data collection

| Bruker SMART APEX CCD                |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Sheldrick, 1996)            |
| $T_{\min} = 0.923, T_{\max} = 0.955$ |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.044$ | 19 restraints                                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.133$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 4893 reflections                | $\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$ |
| 358 parameters                  |                                                            |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$       | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------|----------------|-------------------------|--------------|---------------------------|
| $C10-H10\cdots O2^{i}$ | 0.93           | 2.57                    | 3.386 (3)    | 146                       |
| Symmetry code: (i) -   | r ⊥ 1 _v _7 ⊥  | . 1                     |              |                           |

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This project was supported by the Foundation of the Education Department of Hebei Province (grant No. 606022).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2589).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

Han, J.-R., Zhen, X.-L., Tian, X., Li, F. & Liu, S.-X. (2007). Acta Cryst. E63, 04035

- Hu, T.-P. (2006). Acta Cryst. E62, o2270-o2271.
- Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
- Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany,
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, 04397 [doi:10.1107/S1600536807051021]

# (*E*)-4-Chloro-2-[(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1*H*-pyrazol-4-yl)iminomethyl]-6-meth-oxyphenyl 4-methylbenzenesulfonate acetonitrile solvate

#### X.-L. Zhen, X. Tian, Z.-C. Li, J.-R. Han and S.-X. Liu

#### Comment

Schiff-base ligands have received a good deal of attention in biology and chemistry (Kahwa *et al.*, 1986) in areas such as protein and enzyme mimics (Santos *et al.*, 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (*E*)-4-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3- dihydro-1*H*-pyrazol-4-ylimino)methyl]-phenyl 4-chloroben-zoate (Han *et al.*, 2007) and (*E*)-4-[4-(4-Chlorobenzyloxy)benzylideneamino]-1,5- dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one (Hu, 2006) have been reported. We now report the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

The bond lengths and angles of (I) are within normal ranges (Allen *et al.*, 1987). The pyrazolone ring (C16—C18/N1/N2/N3/O5) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.030 Å. It makes a dihedral angle of 54.45 (9)° with the attached phenyl ring (C21—C26). The *o*-vanillin group (C8—C13/C15/O3/O4) is almost planar, with an r.m.s. deviation for fitted atoms of 0.020 Å. This group makes dihedral angles of 25.87 (4)°, 11.93 (3)° and 72.05 (7)°, with the the pyrazolone ring (C16—C18/N1/N2/N3/O5), the terminal C1—C6 benzene ring and the terminal C21—C26 phenyl ring, respectively.

The crystal packing is stabilized by weak intermolecular C10—H10···O2=S1 interaction (Table 1, Fig. 2) that form inversion dimers.

#### Experimental

An anhydrous ethanol solution (50 ml) of 4-chloro-2-formyl-6-methoxyphenyl 4-methylbenzenesulfonate (3.41 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 3 h under N<sub>2</sub>, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 85% yield. Yellow blocks of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

#### Refinement

The H atoms were included in calculated positions (C—H = 0.93–0.96 Å) and refined as riding  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ .

**Figures** 



Fig. 1. The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Fig. 2. A packing diagram for (I), with hydrogen bonds drawn as dashed lines.

 $(E)-4-Chloro-2-[(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-\ yl) iminomethyl]-6-methoxyphenyl 4-methylbenzenesulfonate acetonitrile solvate$ 

Crystal data

| $C_{26}H_{24}ClN_3O_5S{\cdot}C_2H_3N$ | Z = 2                                                |
|---------------------------------------|------------------------------------------------------|
| $M_r = 567.06$                        | $F_{000} = 592$                                      |
| Triclinic, PT                         | $D_{\rm x} = 1.349 {\rm Mg m}^{-3}$                  |
| Hall symbol: -P 1                     | Mo <i>K</i> $\alpha$ radiation $\lambda = 0.71073$ Å |
| a = 7.3242 (9)  Å                     | Cell parameters from 4430 reflections                |
| <i>b</i> = 13.2452 (17) Å             | $\theta = 2.8 - 26.4^{\circ}$                        |
| <i>c</i> = 15.3145 (19) Å             | $\mu = 0.26 \text{ mm}^{-1}$                         |
| $\alpha = 108.731 \ (2)^{\circ}$      | T = 294 (2) K                                        |
| $\beta = 93.303 \ (2)^{\circ}$        | Block, yellow                                        |
| $\gamma = 94.910 \ (2)^{\circ}$       | $0.24 \times 0.22 \times 0.18 \text{ mm}$            |
| $V = 1396.1 (3) \text{ Å}^3$          |                                                      |

#### Data collection

| Bruker SMART APEX CCD<br>diffractometer  | 4893 independent reflections           |
|------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube | 4057 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                  | $R_{\rm int} = 0.016$                  |
| T = 294(2)  K                            | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\phi$ and $\omega$ scans                | $\theta_{\min} = 1.6^{\circ}$          |
| Absorption correction: multi-scan        | $h = -8 \rightarrow 8$                 |

| (SADABS; Sheldrick, 1996)            |                          |
|--------------------------------------|--------------------------|
| $T_{\min} = 0.923, T_{\max} = 0.955$ | $k = -15 \rightarrow 13$ |
| 7152 measured reflections            | $l = -18 \rightarrow 14$ |

#### Refinement

| Refinement on $F^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Secondary atom site location: difference Fourier ma                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Least-squares matrix: full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hydrogen site location: inferred from neighbouring sites                                                    |  |  |
| $R[F^2 > 2\sigma(F^2)] = 0.044$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H-atom parameters constrained                                                                               |  |  |
| $wR(F^2) = 0.133$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $w = 1/[\sigma^2(F_o^2) + (0.0722P)^2 + 0.7683P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                         |  |  |
| <i>S</i> = 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                         |  |  |
| 4893 reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Delta \rho_{max} = 0.72 \text{ e} \text{ Å}^{-3}$                                                         |  |  |
| 358 parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$                                                      |  |  |
| 19 restraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Extinction correction: SHELXL97 (Sheldrick, 1997a), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |  |  |
| Defense of the location of a location for the location of the |                                                                                                             |  |  |

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0160 (19) methods

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | у             | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|---------------|---------------|-------------------------------|
| S1  | 0.62434 (8)  | 0.24085 (4)   | 0.38970 (4)   | 0.03804 (18)                  |
| Cl1 | 0.72326 (14) | -0.28513 (6)  | 0.33595 (5)   | 0.0783 (3)                    |
| 01  | 0.6098 (2)   | 0.25614 (14)  | 0.30172 (11)  | 0.0514 (4)                    |
| O2  | 0.4724 (2)   | 0.18514 (14)  | 0.41509 (12)  | 0.0509 (4)                    |
| 03  | 0.8015 (2)   | 0.17747 (11)  | 0.39394 (10)  | 0.0372 (4)                    |
| O4  | 0.7707 (2)   | 0.11000 (14)  | 0.53785 (10)  | 0.0505 (4)                    |
| 05  | 0.9284 (2)   | 0.18328 (12)  | 0.11286 (10)  | 0.0453 (4)                    |
| N1  | 0.7377 (2)   | -0.03192 (14) | 0.12557 (11)  | 0.0326 (4)                    |
| N2  | 0.8337 (2)   | 0.09923 (14)  | -0.04314 (11) | 0.0352 (4)                    |
| N3  | 0.7241 (2)   | 0.00446 (14)  | -0.09482 (11) | 0.0346 (4)                    |
| C1  | 0.6988 (3)   | 0.36377 (18)  | 0.47552 (15)  | 0.0405 (5)                    |
| C2  | 0.7231 (5)   | 0.3682 (2)    | 0.56658 (18)  | 0.0637 (8)                    |
| H2  | 0.7062       | 0.3062        | 0.5827        | 0.076*                        |

| C3   | 0.7733 (5) | 0.4671 (2)    | 0.63347 (19)  | 0.0702 (8)  |
|------|------------|---------------|---------------|-------------|
| H3   | 0.7900     | 0.4711        | 0.6952        | 0.084*      |
| C4   | 0.7994 (3) | 0.5602 (2)    | 0.61129 (19)  | 0.0533 (6)  |
| C5   | 0.7738 (4) | 0.5527 (2)    | 0.52022 (19)  | 0.0559 (7)  |
| H5   | 0.7901     | 0.6147        | 0.5042        | 0.067*      |
| C6   | 0.7242 (4) | 0.45531 (19)  | 0.45123 (17)  | 0.0494 (6)  |
| H6   | 0.7082     | 0.4516        | 0.3896        | 0.059*      |
| C7   | 0.8544 (4) | 0.6671 (2)    | 0.6855 (2)    | 0.0747 (9)  |
| H7A  | 0.9848     | 0.6758        | 0.7013        | 0.112*      |
| H7B  | 0.7915     | 0.6699        | 0.7394        | 0.112*      |
| H7C  | 0.8218     | 0.7236        | 0.6631        | 0.112*      |
| C8   | 0.7729 (3) | 0.06603 (17)  | 0.37770 (14)  | 0.0342 (5)  |
| С9   | 0.7623 (3) | 0.03145 (18)  | 0.45460 (14)  | 0.0386 (5)  |
| C10  | 0.7456 (3) | -0.07720 (19) | 0.44131 (15)  | 0.0438 (5)  |
| H10  | 0.7382     | -0.1023       | 0.4913        | 0.053*      |
| C11  | 0.7400 (3) | -0.14827 (18) | 0.35172 (16)  | 0.0445 (5)  |
| C12  | 0.7497 (3) | -0.11512 (18) | 0.27572 (15)  | 0.0392 (5)  |
| H12  | 0.7457     | -0.1652       | 0.2168        | 0.047*      |
| C13  | 0.7657 (3) | -0.00529 (17) | 0.28775 (14)  | 0.0338 (5)  |
| C14  | 0.7599 (4) | 0.0782 (2)    | 0.61864 (16)  | 0.0544 (6)  |
| H14A | 0.6451     | 0.0352        | 0.6139        | 0.082*      |
| H14B | 0.7678     | 0.1408        | 0.6727        | 0.082*      |
| H14C | 0.8597     | 0.0372        | 0.6234        | 0.082*      |
| C15  | 0.7817 (3) | 0.03317 (17)  | 0.20836 (13)  | 0.0332 (4)  |
| H15  | 0.8235     | 0.1045        | 0.2179        | 0.040*      |
| C16  | 0.7603 (3) | 0.00425 (16)  | 0.05086 (13)  | 0.0306 (4)  |
| C17  | 0.8511 (3) | 0.10494 (17)  | 0.04996 (13)  | 0.0329 (4)  |
| C18  | 0.6926 (3) | -0.05439 (16) | -0.03873 (13) | 0.0318 (4)  |
| C19  | 0.6029 (3) | -0.16592 (17) | -0.07583 (15) | 0.0410 (5)  |
| H19A | 0.4963     | -0.1690       | -0.1165       | 0.062*      |
| H19B | 0.5665     | -0.1893       | -0.0256       | 0.062*      |
| H19C | 0.6877     | -0.2119       | -0.1095       | 0.062*      |
| C20  | 0.7379 (3) | -0.0387 (2)   | -0.19409 (14) | 0.0458 (6)  |
| H20A | 0.8540     | -0.0670       | -0.2052       | 0.069*      |
| H20B | 0.7292     | 0.0173        | -0.2208       | 0.069*      |
| H20C | 0.6398     | -0.0950       | -0.2217       | 0.069*      |
| C21  | 0.8404 (3) | 0.19099 (17)  | -0.07269 (14) | 0.0365 (5)  |
| C22  | 0.6866 (3) | 0.2147 (2)    | -0.11566 (17) | 0.0474 (6)  |
| H22  | 0.5772     | 0.1695        | -0.1279       | 0.057*      |
| C23  | 0.6975 (4) | 0.3068 (2)    | -0.1402 (2)   | 0.0638 (8)  |
| H23  | 0.5953     | 0.3229        | -0.1701       | 0.077*      |
| C24  | 0.8578 (5) | 0.3746 (2)    | -0.1208 (2)   | 0.0693 (8)  |
| H24  | 0.8634     | 0.4370        | -0.1365       | 0.083*      |
| C25  | 1.0115 (4) | 0.3500 (2)    | -0.0779 (2)   | 0.0651 (8)  |
| H25  | 1.1201     | 0.3961        | -0.0648       | 0.078*      |
| C26  | 1.0043 (3) | 0.2575 (2)    | -0.05454 (18) | 0.0499 (6)  |
| H26  | 1.1081     | 0.2401        | -0.0270       | 0.060*      |
| C27  | 0.7594 (6) | 0.4169 (3)    | 0.1580 (3)    | 0.1074 (14) |
| H27A | 0.8269     | 0.4824        | 0.1979        | 0.161*      |
|      |            |               |               |             |

| H27B | 0.8110      | 0.3952     | 0.0995     | 0.161*    |
|------|-------------|------------|------------|-----------|
| H27C | 0.7666      | 0.3619     | 0.1861     | 0.161*    |
| C28  | 0.5735 (7)  | 0.4333 (3) | 0.1443 (4) | 0.128 (2) |
| N4   | 0.4221 (10) | 0.4429 (5) | 0.1437 (5) | 0.186 (2) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0442 (3)  | 0.0362 (3)  | 0.0308 (3)  | -0.0002 (2)  | -0.0012 (2)  | 0.0088 (2)   |
| Cl1 | 0.1364 (8)  | 0.0419 (4)  | 0.0635 (5)  | 0.0086 (4)   | 0.0092 (4)   | 0.0272 (3)   |
| 01  | 0.0684 (11) | 0.0506 (10) | 0.0334 (9)  | 0.0052 (8)   | -0.0071 (7)  | 0.0135 (7)   |
| O2  | 0.0449 (9)  | 0.0478 (10) | 0.0571 (10) | -0.0033 (7)  | 0.0066 (8)   | 0.0148 (8)   |
| O3  | 0.0424 (8)  | 0.0357 (8)  | 0.0318 (8)  | -0.0017 (6)  | 0.0012 (6)   | 0.0105 (6)   |
| O4  | 0.0740 (12) | 0.0533 (10) | 0.0236 (8)  | 0.0054 (8)   | 0.0044 (7)   | 0.0124 (7)   |
| O5  | 0.0603 (10) | 0.0392 (9)  | 0.0311 (8)  | -0.0092 (7)  | -0.0047 (7)  | 0.0095 (7)   |
| N1  | 0.0352 (9)  | 0.0366 (9)  | 0.0270 (9)  | 0.0047 (7)   | 0.0025 (7)   | 0.0117 (7)   |
| N2  | 0.0425 (10) | 0.0353 (9)  | 0.0273 (9)  | -0.0016 (7)  | -0.0020 (7)  | 0.0120 (7)   |
| N3  | 0.0436 (10) | 0.0360 (9)  | 0.0228 (8)  | 0.0016 (8)   | -0.0008 (7)  | 0.0089 (7)   |
| C1  | 0.0443 (12) | 0.0382 (12) | 0.0340 (11) | 0.0014 (9)   | 0.0008 (9)   | 0.0063 (9)   |
| C2  | 0.102 (2)   | 0.0456 (15) | 0.0395 (14) | -0.0013 (14) | -0.0023 (14) | 0.0125 (12)  |
| C3  | 0.103 (2)   | 0.0603 (18) | 0.0353 (14) | 0.0017 (16)  | -0.0083 (14) | 0.0029 (12)  |
| C4  | 0.0465 (14) | 0.0434 (14) | 0.0578 (16) | 0.0052 (11)  | 0.0011 (11)  | 0.0004 (12)  |
| C5  | 0.0641 (17) | 0.0380 (13) | 0.0615 (17) | 0.0027 (11)  | 0.0072 (13)  | 0.0111 (12)  |
| C6  | 0.0612 (15) | 0.0435 (13) | 0.0434 (13) | 0.0041 (11)  | 0.0049 (11)  | 0.0143 (11)  |
| C7  | 0.074 (2)   | 0.0527 (17) | 0.073 (2)   | 0.0020 (14)  | -0.0036 (16) | -0.0105 (15) |
| C8  | 0.0371 (11) | 0.0353 (11) | 0.0302 (11) | 0.0017 (9)   | 0.0008 (8)   | 0.0120 (9)   |
| C9  | 0.0413 (12) | 0.0490 (13) | 0.0263 (11) | 0.0025 (10)  | 0.0012 (9)   | 0.0143 (9)   |
| C10 | 0.0525 (14) | 0.0520 (14) | 0.0342 (12) | 0.0054 (11)  | 0.0042 (10)  | 0.0241 (10)  |
| C11 | 0.0557 (14) | 0.0384 (12) | 0.0433 (13) | 0.0037 (10)  | 0.0033 (10)  | 0.0194 (10)  |
| C12 | 0.0489 (13) | 0.0366 (11) | 0.0314 (11) | 0.0047 (9)   | 0.0015 (9)   | 0.0105 (9)   |
| C13 | 0.0341 (10) | 0.0404 (11) | 0.0272 (10) | 0.0011 (9)   | 0.0011 (8)   | 0.0125 (9)   |
| C14 | 0.0636 (16) | 0.0758 (18) | 0.0277 (12) | 0.0086 (13)  | 0.0048 (10)  | 0.0221 (12)  |
| C15 | 0.0365 (11) | 0.0351 (11) | 0.0287 (10) | 0.0033 (8)   | 0.0033 (8)   | 0.0115 (9)   |
| C16 | 0.0350 (10) | 0.0319 (10) | 0.0252 (10) | 0.0048 (8)   | 0.0025 (8)   | 0.0095 (8)   |
| C17 | 0.0360 (11) | 0.0367 (11) | 0.0261 (10) | 0.0040 (9)   | 0.0024 (8)   | 0.0105 (9)   |
| C18 | 0.0333 (10) | 0.0340 (11) | 0.0282 (10) | 0.0062 (8)   | 0.0041 (8)   | 0.0096 (8)   |
| C19 | 0.0499 (13) | 0.0365 (12) | 0.0325 (11) | -0.0012 (10) | -0.0010 (9)  | 0.0079 (9)   |
| C20 | 0.0576 (14) | 0.0519 (14) | 0.0235 (11) | -0.0006 (11) | 0.0042 (9)   | 0.0080 (10)  |
| C21 | 0.0460 (12) | 0.0376 (11) | 0.0284 (10) | 0.0045 (9)   | 0.0054 (9)   | 0.0137 (9)   |
| C22 | 0.0497 (13) | 0.0488 (14) | 0.0466 (14) | 0.0025 (11)  | -0.0028 (10) | 0.0214 (11)  |
| C23 | 0.0738 (19) | 0.0610 (17) | 0.0662 (18) | 0.0118 (14)  | -0.0092 (14) | 0.0357 (15)  |
| C24 | 0.088 (2)   | 0.0541 (17) | 0.080 (2)   | 0.0037 (15)  | 0.0027 (17)  | 0.0433 (16)  |
| C25 | 0.0662 (18) | 0.0571 (17) | 0.080 (2)   | -0.0095 (14) | 0.0029 (15)  | 0.0378 (15)  |
| C26 | 0.0478 (14) | 0.0514 (14) | 0.0552 (15) | -0.0004 (11) | 0.0029 (11)  | 0.0256 (12)  |
| C27 | 0.116 (4)   | 0.075 (3)   | 0.134 (4)   | 0.009 (2)    | 0.029 (3)    | 0.036 (3)    |
| C28 | 0.123 (4)   | 0.046 (2)   | 0.217 (6)   | 0.015 (2)    | 0.049 (4)    | 0.038 (3)    |
| N4  | 0.185 (3)   | 0.183 (3)   | 0.190 (3)   | 0.0223 (11)  | 0.0167 (10)  | 0.0609 (12)  |

## Geometric parameters (Å, °)

| S1—O2      | 1.4240 (17) | C10—H10       | 0.9300      |
|------------|-------------|---------------|-------------|
| S1—O1      | 1.4247 (17) | C11—C12       | 1.373 (3)   |
| S1—O3      | 1.6139 (16) | C12—C13       | 1.400 (3)   |
| S1—C1      | 1.751 (2)   | C12—H12       | 0.9300      |
| Cl1—C11    | 1.743 (2)   | C13—C15       | 1.468 (3)   |
| O3—C8      | 1.411 (2)   | C14—H14A      | 0.9600      |
| O4—C9      | 1.356 (3)   | C14—H14B      | 0.9600      |
| O4—C14     | 1.434 (3)   | C14—H14C      | 0.9600      |
| O5—C17     | 1.233 (2)   | C15—H15       | 0.9300      |
| N1—C15     | 1.288 (3)   | C16—C18       | 1.380 (3)   |
| N1—C16     | 1.388 (3)   | C16—C17       | 1.443 (3)   |
| N2—C17     | 1.401 (3)   | C18—C19       | 1.479 (3)   |
| N2—N3      | 1.401 (2)   | C19—H19A      | 0.9600      |
| N2—C21     | 1.425 (3)   | C19—H19B      | 0.9600      |
| N3—C18     | 1.349 (3)   | С19—Н19С      | 0.9600      |
| N3—C20     | 1.455 (3)   | C20—H20A      | 0.9600      |
| C1—C2      | 1.377 (3)   | C20—H20B      | 0.9600      |
| C1—C6      | 1.379 (3)   | С20—Н20С      | 0.9600      |
| C2—C3      | 1.384 (4)   | C21—C22       | 1.381 (3)   |
| С2—Н2      | 0.9300      | C21—C26       | 1.385 (3)   |
| C3—C4      | 1.381 (4)   | C22—C23       | 1.385 (4)   |
| С3—Н3      | 0.9300      | С22—Н22       | 0.9300      |
| C4—C5      | 1.367 (4)   | C23—C24       | 1.372 (4)   |
| C4—C7      | 1.509 (4)   | С23—Н23       | 0.9300      |
| C5—C6      | 1.383 (3)   | C24—C25       | 1.386 (4)   |
| С5—Н5      | 0.9300      | C24—H24       | 0.9300      |
| С6—Н6      | 0.9300      | C25—C26       | 1.380 (4)   |
| С7—Н7А     | 0.9600      | С25—Н25       | 0.9300      |
| С7—Н7В     | 0.9600      | С26—Н26       | 0.9300      |
| С7—Н7С     | 0.9600      | C27—C28       | 1.411 (6)   |
| C8—C13     | 1.393 (3)   | С27—Н27А      | 0.9600      |
| C8—C9      | 1.398 (3)   | С27—Н27В      | 0.9600      |
| C9—C10     | 1.381 (3)   | С27—Н27С      | 0.9600      |
| C10-C11    | 1.388 (3)   | C28—N4        | 1.126 (7)   |
| O2—S1—O1   | 118.58 (11) | C12—C13—C15   | 120.92 (19) |
| O2—S1—O3   | 107.79 (9)  | O4C14H14A     | 109.5       |
| O1—S1—O3   | 107.52 (9)  | O4C14H14B     | 109.5       |
| O2—S1—C1   | 111.84 (11) | H14A—C14—H14B | 109.5       |
| O1—S1—C1   | 109.30 (11) | O4—C14—H14C   | 109.5       |
| O3—S1—C1   | 100.09 (9)  | H14A—C14—H14C | 109.5       |
| C8—O3—S1   | 118.42 (12) | H14B—C14—H14C | 109.5       |
| C9—O4—C14  | 117.70 (19) | N1-C15-C13    | 119.96 (19) |
| C15—N1—C16 | 119.45 (18) | N1—C15—H15    | 120.0       |
| C17—N2—N3  | 109.06 (16) | C13—C15—H15   | 120.0       |
| C17—N2—C21 | 123.68 (17) | C18—C16—N1    | 123.36 (18) |
| N3—N2—C21  | 120.39 (16) | C18—C16—C17   | 107.84 (17) |

| C18—N3—N2     | 107.95 (15)  | N1—C16—C17      | 128.80 (17)  |
|---------------|--------------|-----------------|--------------|
| C18—N3—C20    | 125.35 (18)  | O5—C17—N2       | 123.64 (19)  |
| N2—N3—C20     | 118.97 (17)  | O5—C17—C16      | 131.51 (19)  |
| C2—C1—C6      | 121.1 (2)    | N2-C17-C16      | 104.84 (16)  |
| C2C1S1        | 119.46 (19)  | N3-C18-C16      | 109.78 (18)  |
| C6—C1—S1      | 119.36 (18)  | N3—C18—C19      | 121.14 (18)  |
| C1—C2—C3      | 118.3 (3)    | C16—C18—C19     | 129.05 (19)  |
| С1—С2—Н2      | 120.9        | C18—C19—H19A    | 109.5        |
| С3—С2—Н2      | 120.9        | C18—C19—H19B    | 109.5        |
| C4—C3—C2      | 122.0 (3)    | H19A—C19—H19B   | 109.5        |
| С4—С3—Н3      | 119.0        | С18—С19—Н19С    | 109.5        |
| С2—С3—Н3      | 119.0        | H19A—C19—H19C   | 109.5        |
| C5—C4—C3      | 118.1 (2)    | H19B—C19—H19C   | 109.5        |
| C5—C4—C7      | 121.0 (3)    | N3—C20—H20A     | 109.5        |
| C3—C4—C7      | 120.9 (3)    | N3—C20—H20B     | 109.5        |
| C4—C5—C6      | 121.7 (3)    | H20A—C20—H20B   | 109.5        |
| С4—С5—Н5      | 119.1        | N3—C20—H20C     | 109.5        |
| С6—С5—Н5      | 119.1        | H20A—C20—H20C   | 109.5        |
| C1—C6—C5      | 118.8 (2)    | H20B-C20-H20C   | 109.5        |
| С1—С6—Н6      | 120.6        | C22—C21—C26     | 120.9 (2)    |
| С5—С6—Н6      | 120.6        | C22—C21—N2      | 121.1 (2)    |
| С4—С7—Н7А     | 109.5        | C26—C21—N2      | 117.9 (2)    |
| С4—С7—Н7В     | 109.5        | C21—C22—C23     | 119.1 (2)    |
| H7A—C7—H7B    | 109.5        | C21—C22—H22     | 120.4        |
| С4—С7—Н7С     | 109.5        | C23—C22—H22     | 120.4        |
| Н7А—С7—Н7С    | 109.5        | C24—C23—C22     | 120.5 (3)    |
| H7B—C7—H7C    | 109.5        | С24—С23—Н23     | 119.7        |
| C13—C8—C9     | 122.4 (2)    | С22—С23—Н23     | 119.7        |
| C13—C8—O3     | 119.87 (18)  | C23—C24—C25     | 119.9 (3)    |
| C9—C8—O3      | 117.69 (18)  | C23—C24—H24     | 120.0        |
| O4—C9—C10     | 125.18 (19)  | C25—C24—H24     | 120.0        |
| 04—C9—C8      | 115.8 (2)    | C26—C25—C24     | 120.3 (3)    |
| С10—С9—С8     | 119.0 (2)    | С26—С25—Н25     | 119.8        |
| C9—C10—C11    | 118.6 (2)    | C24—C25—H25     | 119.8        |
| С9—С10—Н10    | 120.7        | C25—C26—C21     | 119.1 (2)    |
| C11—C10—H10   | 120.7        | С25—С26—Н26     | 120.5        |
| C12-C11-C10   | 122.8 (2)    | C21—C26—H26     | 120.5        |
| C12—C11—Cl1   | 118.97 (18)  | С28—С27—Н27А    | 109.5        |
| C10-C11-Cl1   | 118.23 (18)  | С28—С27—Н27В    | 109.5        |
| C11—C12—C13   | 119.4 (2)    | H27A—C27—H27B   | 109.5        |
| C11—C12—H12   | 120.3        | С28—С27—Н27С    | 109.5        |
| C13—C12—H12   | 120.3        | H27A—C27—H27C   | 109.5        |
| C8—C13—C12    | 117.77 (19)  | H27B—C27—H27C   | 109.5        |
| C8—C13—C15    | 121.27 (19)  | N4—C28—C27      | 170.8 (7)    |
| O2—S1—O3—C8   | 28.54 (16)   | O3—C8—C13—C12   | 175.72 (18)  |
| O1—S1—O3—C8   | -100.38 (15) | C9—C8—C13—C15   | -178.51 (19) |
| C1—S1—O3—C8   | 145.53 (15)  | O3—C8—C13—C15   | -1.9 (3)     |
| C17—N2—N3—C18 | -7.5 (2)     | C11—C12—C13—C8  | 0.6 (3)      |
| C21—N2—N3—C18 | -159.44 (18) | C11—C12—C13—C15 | 178.3 (2)    |
|               |              |                 |              |

| C17—N2—N3—C20   | -158.46 (19) | C16—N1—C15—C13  | -177.41 (17) |
|-----------------|--------------|-----------------|--------------|
| C21—N2—N3—C20   | 49.6 (3)     | C8—C13—C15—N1   | -165.84 (19) |
| O2—S1—C1—C2     | 46.8 (2)     | C12—C13—C15—N1  | 16.6 (3)     |
| O1—S1—C1—C2     | -179.9 (2)   | C15—N1—C16—C18  | -170.18 (19) |
| O3—S1—C1—C2     | -67.1 (2)    | C15—N1—C16—C17  | 8.9 (3)      |
| O2—S1—C1—C6     | -130.3 (2)   | N3—N2—C17—O5    | -174.35 (19) |
| O1—S1—C1—C6     | 3.0 (2)      | C21—N2—C17—O5   | -23.5 (3)    |
| O3—S1—C1—C6     | 115.8 (2)    | N3—N2—C17—C16   | 5.0 (2)      |
| C6—C1—C2—C3     | 0.2 (4)      | C21—N2—C17—C16  | 155.87 (19)  |
| S1—C1—C2—C3     | -176.9 (2)   | C18—C16—C17—O5  | 178.4 (2)    |
| C1—C2—C3—C4     | -0.1 (5)     | N1-C16-C17-O5   | -0.8 (4)     |
| C2—C3—C4—C5     | 0.2 (5)      | C18—C16—C17—N2  | -0.9 (2)     |
| C2—C3—C4—C7     | -179.9 (3)   | N1-C16-C17-N2   | 179.94 (19)  |
| C3—C4—C5—C6     | -0.4 (4)     | N2-N3-C18-C16   | 6.9 (2)      |
| C7—C4—C5—C6     | 179.7 (3)    | C20-N3-C18-C16  | 155.5 (2)    |
| C2—C1—C6—C5     | -0.4 (4)     | N2-N3-C18-C19   | -171.31 (18) |
| S1—C1—C6—C5     | 176.7 (2)    | C20-N3-C18-C19  | -22.7 (3)    |
| C4—C5—C6—C1     | 0.5 (4)      | N1-C16-C18-N3   | 175.48 (18)  |
| S1—O3—C8—C13    | 88.5 (2)     | C17-C16-C18-N3  | -3.7 (2)     |
| S1—O3—C8—C9     | -94.75 (19)  | N1-C16-C18-C19  | -6.5 (3)     |
| C14—O4—C9—C10   | -0.6 (3)     | C17—C16—C18—C19 | 174.3 (2)    |
| C14—O4—C9—C8    | 179.9 (2)    | C17—N2—C21—C22  | -112.6 (2)   |
| C13—C8—C9—O4    | -179.84 (19) | N3—N2—C21—C22   | 35.1 (3)     |
| O3—C8—C9—O4     | 3.5 (3)      | C17—N2—C21—C26  | 65.5 (3)     |
| C13—C8—C9—C10   | 0.6 (3)      | N3—N2—C21—C26   | -146.8 (2)   |
| O3—C8—C9—C10    | -176.11 (19) | C26—C21—C22—C23 | -0.4 (4)     |
| O4—C9—C10—C11   | -179.5 (2)   | N2-C21-C22-C23  | 177.7 (2)    |
| C8—C9—C10—C11   | 0.0 (3)      | C21—C22—C23—C24 | -1.1 (4)     |
| C9—C10—C11—C12  | -0.3 (4)     | C22—C23—C24—C25 | 1.2 (5)      |
| C9—C10—C11—Cl1  | 178.83 (18)  | C23—C24—C25—C26 | 0.0 (5)      |
| C10-C11-C12-C13 | -0.1 (4)     | C24—C25—C26—C21 | -1.4 (5)     |
| Cl1—C11—C12—C13 | -179.15 (17) | C22-C21-C26-C25 | 1.6 (4)      |
| C9—C8—C13—C12   | -0.9 (3)     | N2-C21-C26-C25  | -176.5 (2)   |
|                 |              |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------------------------------------------|-------------|--------------|--------------|------------|
| C10—H10····O2 <sup>i</sup>                   | 0.93        | 2.57         | 3.386 (3)    | 146        |
| Symmetry codes: (i) $-x+1$ , $-y$ , $-z+1$ . |             |              |              |            |



Fig. 1



